Квантовая механика

КВАНТОВАЯ МЕХАНИКА — раздел современной физики, изучающий законы движения объектов микромира. Возникновение К. м., ее развитие и интерпретация связаны с именами Планка (открытие кванта действия), Бройля (идея о «волнах материи»). Бора (атомная модель, принцип соответствия, дополнительный способ описания, или принцип дополнительности), Гейзенберга (соотношение неопределенностей), Шредингера (волновое уравнение), Борна (статистическая интерпретация), П. Дирака (релятивистское уравнение). В научную разработку и истолкование физических и философских проблем К. м. существенный вклад внесли советские ученые Вавилов, В. А. Фок, И. Е. Тамм, Л. Д. Ландау, Д. И. Блохинцев и др. Специфические особенности К. м. как физической теории (корпускулярно-волновой дуализм, соотношение неопределенностей и др.) и связанных с ней методологических идей (соответствия принцип, дополнительности принцип и др.) обусловлены открытием «конечности взаимодействия», означающей, что любые взаимодействия между объектами в микромире (в т. ч. между прибором и микрочастицей) не могут быть меньше значения кванта действия (h= 6,62 *10 -27 эрг-сек.). При характеристике состояния квантовых объектов (микрочастиц) неправомерно пользоваться понятием механической причинности, предполагающим точное одновременное знание начальных условий (импульсов и координат). Это состояние характеризуется статистической, вероятностной формой причинной зависимости, выраженной в понятии волновой функции, которое потенциально, как бы в «снятом виде», содержит взаимоисключающие и взаимодополняющие определения свойств микрообъектов, реализующихся в зависимости от конкретных экспериментальных условий. Включение в сферу познания квантовых явлений, необычных с точки зрения привычного, макроскопического опыта, возрастание значения измерительных процедур, экспериментальной техники, логико-математического аппарата неизбежно повлекли за собой усложнение роли субъекта, увеличение зависимости от его технической и методологической вооруженности особенностей вычленения (и в этом смысле «приготовления»), исследования того или иного объекта, фрагмента действительности. Это важно учитывать при анализе понятия «квантовый объект». К. м. сделала более очевидным тот факт, что без активного вмешательства в систему взаимодействующих объектов исследователь не может адекватно познавать их. Хотя и в новых условиях сохраняется принципиальная основа взаимодействия человека и внешнего мира — первичность объекта и вторичность субъекта, но при этом происходит более тесное их связывание. Вокруг этих философских проблем К. м. развернулась острая полемика. Они стали, особенно в начальный период развития К. м., предметом различного рода антинаучных, в т. ч. позитивистских, спекуляций, в известной степени связанных с высказываниями некоторых сторонников так называемой копенгагенской интерпретации К. м. Ошибочное истолкование специфики микромира исключительно как следствия особенностей процесса познания и измерения приводило к преувеличению роли «наблюдателя», к утверждениям о «неконтролируемом возмущении», «крахе причинности», «свободе воли» электрона и т. п. Отказ от подобных утверждений, эволюция взглядов ряда создателей К. м., как и в целом ситуация в современной физике, свидетельствуют о том, что «материалистический основной дух физики» (Ленин) побеждает. В настоящее время К. м. не только позволила научно объяснить обширный круг явлений в области физики, химии, биологии, но и приобрела, наряду с фундаментальным, также и прикладное, инженерное значение. Это еще раз подтверждает безграничные возможности человеческого разума, вооруженного передовой методологией, в познании тайн микромира.

Философский словарь. Под ред. И.Т. Фролова. М., 1991, с. 188-189.